# Set python environment and version in RStudio ;-)
reticulate::use_python("/Users/Mezhoud/anaconda3/bin/python3", required = TRUE)
reticulate::py_config()
## python:         /Users/Mezhoud/anaconda3/bin/python3
## libpython:      /Users/Mezhoud/anaconda3/lib/libpython3.7m.dylib
## pythonhome:     /Users/Mezhoud/anaconda3:/Users/Mezhoud/anaconda3
## version:        3.7.5 (default, Oct 25 2019, 10:52:18)  [Clang 4.0.1 (tags/RELEASE_401/final)]
## numpy:          /Users/Mezhoud/anaconda3/lib/python3.7/site-packages/numpy
## numpy_version:  1.18.1
## 
## NOTE: Python version was forced by use_python function
Train <- fread("Train.csv")
Train <- Train %>%
  rename(`Altitude (m)` = elevation) %>%
  rename(Longitude = X) %>%
  rename(Latitude = Y) %>%
  separate(Square_ID, into = c("Square_ID", "v1", "v2", "v3", "v4"), sep = "-" , remove = FALSE) %>%
  unite("other", v1, v2,v3, v4, sep = "-") %>%
  select(Longitude,Latitude,`Altitude (m)`,  LC_Type1_mode,Square_ID, other , everything()) 
  #filter(row_number()==1 )
Train %>% head() %>% knitr::kable() %>%   kable_styling() %>%
  scroll_box(width = "1000px", height = "1000px")
Longitude Latitude Altitude (m) LC_Type1_mode Square_ID other target_2015 precip 2014-11-16 - 2014-11-23 precip 2014-11-23 - 2014-11-30 precip 2014-11-30 - 2014-12-07 precip 2014-12-07 - 2014-12-14 precip 2014-12-14 - 2014-12-21 precip 2014-12-21 - 2014-12-28 precip 2014-12-28 - 2015-01-04 precip 2015-01-04 - 2015-01-11 precip 2015-01-11 - 2015-01-18 precip 2015-01-18 - 2015-01-25 precip 2015-01-25 - 2015-02-01 precip 2015-02-01 - 2015-02-08 precip 2015-02-08 - 2015-02-15 precip 2015-02-15 - 2015-02-22 precip 2015-02-22 - 2015-03-01 precip 2015-03-01 - 2015-03-08 precip 2015-03-08 - 2015-03-15 precip 2019-01-20 - 2019-01-27 precip 2019-01-27 - 2019-02-03 precip 2019-02-03 - 2019-02-10 precip 2019-02-10 - 2019-02-17 precip 2019-02-17 - 2019-02-24 precip 2019-02-24 - 2019-03-03 precip 2019-03-03 - 2019-03-10 precip 2019-03-10 - 2019-03-17 precip 2019-03-17 - 2019-03-24 precip 2019-03-24 - 2019-03-31 precip 2019-03-31 - 2019-04-07 precip 2019-04-07 - 2019-04-14 precip 2019-04-14 - 2019-04-21 precip 2019-04-21 - 2019-04-28 precip 2019-04-28 - 2019-05-05 precip 2019-05-05 - 2019-05-12 precip 2019-05-12 - 2019-05-19
34.26 -15.91 887.7642 9 4e3c3896 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0
34.26 -15.90 743.4039 9 4e3c3897 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0
34.26 -15.89 565.7283 9 4e3c3898 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0
34.26 -15.88 443.3928 10 4e3c3899 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0
34.26 -15.87 437.4434 10 4e3c389a 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0
34.26 -15.86 405.6317 10 4e3c389b 14ce-11ea-bce5-f49634744a41 0 0 0 0 14.84403 14.55282 12.23777 57.45136 30.12705 30.44947 1.521829 29.39 32.87832 8.179804 0.9639814 16.6591 3.304466 0 12.99262 4.582856 35.03753 4.796012 28.08331 0 58.36246 18.26469 17.53749 0.8963228 1.68 0 0 0 0 0 0

0.1 Delimitate the area of the study

1 Glimpse to Hydrology, Elevation, Landscover, and Population Maps

1.1 Glimpse on the Altitude (Elevation) and Type soil in the region using train dataset

1.1.1 Soil Description

  • The Color palette and the description of the Soil Name are loaded from this link.
LC_Type1_mode Color Soil Name Description
1 #05450a Evergreen Needleleaf Forests dominated by evergreen conifer trees (canopy >2m). Tree cover >60%.
2 #086a10 Evergreen Broadleaf Forests dominated by evergreen broadleaf and palmate trees (canopy >2m). Tree cover >60%.
3 #54a708 Deciduous Needleleaf Forests dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree cover >60%.
4 #78d203 Deciduous Broadleaf Forests dominated by deciduous broadleaf trees (canopy >2m). Tree cover >60%.
5 #009900 Mixed Forests dominated by neither deciduous nor evergreen (40-60% of each) tree type (canopy >2m). Tree cover >60%.
6 #c6b044 Closed Shrublands dominated by woody perennials (1-2m height) >60% cover.
7 #dcd159 Open Shrublands dominated by woody perennials (1-2m height) 10-60% cover.
8 #dade48 Woody Savannas tree cover 30-60% (canopy >2m).
9 #fbff13 Savannas tree cover 10-30% (canopy >2m).
10 #b6ff05 Grasslands dominated by herbaceous annuals (<2m).
11 #27ff87 Permanent Wetlands permanently inundated lands with 30-60% water cover and >10% vegetated cover.
12 #c24f44 Croplands at least 60% of area is cultivated cropland.
13 #a5a5a5 Urban and Built-up Lands at least 30% impervious surface area including building materials, asphalt and vehicles.
14 #ff6d4c Cropland/Natural Vegetation Mosaics mosaics of small-scale cultivation 40-60% with natural tree, shrub, or herbaceous vegetation.
15 #69fff8 Permanent Snow and Ice at least 60% of area is covered by snow and ice for at least 10 months of the year.
16 #f9ffa4 Barren at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation.
17 #1c0dff Water Bodies at least 60% of area is covered by permanent water bodies.

##                                      colors
## Evergreen Needleleaf Forests        #05450a
## Evergreen Broadleaf Forests         #086a10
## Deciduous Needleleaf Forests        #54a708
## Deciduous Broadleaf Forests         #78d203
## Mixed Forests                       #009900
## Closed Shrublands                   #c6b044
## Open Shrublands                     #dcd159
## Woody Savannas                      #dade48
## Savannas                            #fbff13
## Grasslands                          #b6ff05
## Permanent Wetlands                  #27ff87
## Croplands                           #c24f44
## Urban and Built-up Lands            #a5a5a5
## Cropland/Natural Vegetation Mosaics #ff6d4c
## Permanent Snow and Ice              #69fff8
## Barren                              #f9ffa4
## Water Bodies                        #1c0dff
p1 <- Train %>%
  distinct(Square_ID, .keep_all = TRUE) %>%
  ggplot() +
  aes(x = Longitude, y = Latitude, colour = `Altitude (m)`) +
  geom_point(size = 5) +
  scale_colour_gradientn(colours = terrain.colors(10))

## add box to urban zone
p1bis <- p1 +
  geom_rect(aes(xmin = 34.95, xmax = 35.1, ymin = -15.71, ymax =-15.87),
               fill = "transparent", color = "black", size = 0.5) +
   geom_rect(aes(xmin = 35.05, xmax = 35.15, ymin = -16.52, ymax =-16.64),
               fill = "transparent", color = "black", size = 0.5) +
     geom_rect(aes(xmin = 34.8, xmax = 34.88, ymin = -15.98, ymax =-16.29),
               fill = "transparent", color = "black", size = 0.5) +
   geom_rect(aes(xmin = 35.39, xmax = 35.41, ymin = -15.77, ymax =-15.85),
               fill = "transparent", color = "black", size = 0.5) +
     geom_rect(aes(xmin = 35.38, xmax = 35.4, ymin = -15.24, ymax =-15.3),
               fill = "transparent", color = "black", size = 0.5) +
  ggtitle("Area Altitude distibution and Urban zone localisation")


p2 <- Train %>%
  distinct(Square_ID, .keep_all = TRUE) %>%
  left_join(Soil_pal, by = "LC_Type1_mode") %>%
  #filter(LC_Type1_mode == 13) %>%
  ggplot() +
  aes(x = Longitude, y = Latitude, colour = `Soil Name`) +   
  geom_point(size = 2) +
  colScale +
  #scale_colour_manual(values = unique(full$Color))  +
  geom_rect(aes(xmin = 34.95, xmax = 35.1, ymin = -15.71, ymax =-15.87),
               fill = "transparent", color = "black", size = 0.5) +
   geom_rect(aes(xmin = 35.05, xmax = 35.15, ymin = -16.52, ymax =-16.64),
               fill = "transparent", color = "black", size = 0.5) +
     geom_rect(aes(xmin = 34.8, xmax = 34.88, ymin = -15.98, ymax =-16.29),
               fill = "transparent", color = "black", size = 0.5) +
   geom_rect(aes(xmin = 35.39, xmax = 35.41, ymin = -15.77, ymax =-15.85),
               fill = "transparent", color = "black", size = 0.5) +
     geom_rect(aes(xmin = 35.38, xmax = 35.4, ymin = -15.24, ymax =-15.3),
               fill = "transparent", color = "black", size = 0.5) +
    ggtitle("Soil Name distibution and Urban zone localisation") 

p1bis

  • We obtain similar plots compared to Elevation and Landcover plots from biblography.

  • The right plot shows less Altitude of the green dark area in the south of the Malawi.

  • The right plot shows the Soil Name distribution. The Urban zone is indicated in grey color. The most large urban zone is the center of the region, loacted in Croplands Soil Name and in relative high altitude (more that 1000 m (yellow)). The four other urban zone are smaller are located in green area which can more exposed to flood.

1.3 Preprocessing Train data

Longitude Latitude Altitude (m) Soil_type Square_ID other Week of Pluviometry Week Year cum_Pluvio Target Color Soil Name Description Target Range Height
34.26 -15.91 887.7642 9 4e3c3896 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L4
34.26 -15.90 743.4039 9 4e3c3897 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L3
34.26 -15.89 565.7283 9 4e3c3898 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L2
34.26 -15.88 443.3928 10 4e3c3899 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L2
34.26 -15.87 437.4434 10 4e3c389a 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L2
34.26 -15.86 405.6317 10 4e3c389b 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L2

1.4 Set Water bodies, Permanent Wetland and Rivers areas with independent class even that have the same Altitude with other Soil Name

Longitude Latitude Altitude (m) Soil_type Square_ID other Week of Pluviometry Week Year cum_Pluvio Target Color Soil Name Description Target Range Height
34.26 -15.91 887.7642 9 4e3c3896 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L5
34.26 -15.90 743.4039 9 4e3c3897 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L4
34.26 -15.89 565.7283 9 4e3c3898 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L2
34.26 -15.88 443.3928 10 4e3c3899 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1
34.26 -15.87 437.4434 10 4e3c389a 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1
34.26 -15.86 405.6317 10 4e3c389b 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1

1.7 Weight for Soil/Height/Flood

Longitude Latitude Altitude (m) Soil_type Square_ID other Week of Pluviometry Week Year cum_Pluvio Target Color Soil Name Description Target Range Height wrap_mode SoilHeight_Weight
34.26 -15.91 887.7642 9 4e3c3896 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L5 No Risk 2015 0.6162409
34.26 -15.90 743.4039 9 4e3c3897 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L4 No Risk 2015 0.6578095
34.26 -15.89 565.7283 9 4e3c3898 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L2 No Risk 2015 0.5901199
34.26 -15.88 443.3928 10 4e3c3899 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141
34.26 -15.87 437.4434 10 4e3c389a 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141
34.26 -15.86 405.6317 10 4e3c389b 14ce-11ea-bce5-f49634744a41 2014-11-16 0 46 2015 0 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141

1.9 Target distribution

We note:

  • Unbalanced dataset by class 0 without risk. We can reduce the size of class 0, by omitting Water body area, and highest Altitude (>2300m).

  • The surface with High risk range [0.75,1] is the lowest class, followed by Middle with probability between [0.5, 0.75].

  • The proportion of area with no risk coverts the most important surface during the Flood 2015.

  • We expect that these values will increase for surfaces with risk, if the pluviometry is higher during flood 2019.

2 Dealing with unbalanced dataset

2.1 Flood Zone and Pluviomtery: 2015 versus 2019

  • Depending only on cumulative pluviometry we expect to have more flood surface during 2019 compared to flood during 2015.

  • Cumulative pluviomtery of the same zone during 2019 is higher (2 times) that those of 2015.

  • The Flood seems to be more invasive and the water will reach higher altitude and more area.

3 Random Forest modeling of Flood Zone Probability

4 Caret

Very time consuming!

5 Round Target to (0,1)

5.2 Add target Range variable to 2019

Longitude Latitude Altitude (m) Soil_type Square_ID other Week of Pluviometry Week Year cum_Pluvio Target Color Soil Name Description Target Range Height wrap_mode SoilHeight_Weight binTarget meanPluv medianPluv maxPluv
34.26 -15.91 887.7642 9 4e3c3896 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L5 No Risk 2015 0.6162409 0 12.78804 4.689434 58.36246
34.26 -15.90 743.4039 9 4e3c3897 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L4 No Risk 2015 0.6578095 0 12.78804 4.689434 58.36246
34.26 -15.89 565.7283 9 4e3c3898 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #fbff13 Savannas tree cover 10-30% (canopy >2m). 0 L2 No Risk 2015 0.5901199 0 12.78804 4.689434 58.36246
34.26 -15.88 443.3928 10 4e3c3899 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141 0 12.78804 4.689434 58.36246
34.26 -15.87 437.4434 10 4e3c389a 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141 0 12.78804 4.689434 58.36246
34.26 -15.86 405.6317 10 4e3c389b 14ce-11ea-bce5-f49634744a41 2019-01-20 12.99262 3 2019 12.99262 0 #b6ff05 Grasslands dominated by herbaceous annuals (<2m). 0 L1 No Risk 2015 0.5949141 0 12.78804 4.689434 58.36246

5.3 Save Train2015 and test2019 dataset for Python

Longitude Latitude weeks Week Altitude Soil_type Square_ID Pluviometry cum_Pluvio Target binTarget Target_Range Height SoilHeight_Weight meanPluv medianPluv maxPluv
34.26 -15.91 2014-11-16 46 6.788706 9 4e3c3896 0 0 0 0 0 4 0.6162409 12.78804 4.689434 58.36246
34.26 -15.90 2014-11-16 46 6.611239 9 4e3c3897 0 0 0 0 0 3 0.6578095 12.78804 4.689434 58.36246
34.26 -15.89 2014-11-16 46 6.338114 9 4e3c3898 0 0 0 0 0 1 0.5901199 12.78804 4.689434 58.36246
34.26 -15.88 2014-11-16 46 6.094456 10 4e3c3899 0 0 0 0 0 0 0.5949141 12.78804 4.689434 58.36246
34.26 -15.87 2014-11-16 46 6.080947 10 4e3c389a 0 0 0 0 0 0 0.5949141 12.78804 4.689434 58.36246
34.26 -15.86 2014-11-16 46 6.005446 10 4e3c389b 0 0 0 0 0 0 0.5949141 12.78804 4.689434 58.36246

6 Animated Pluviometry of 2015 and 2019

6.1 Google Earth Engine Precipitation view

We used Google Earth Engine to see pluvimmetry before Flood 2015 and 2019 around the south of Malawi.

6.2 Get animated Cumulative Pluviometery

link

7 Xgboost regression with Python

##    Longitude  Latitude       weeks  ...   meanPluv  medianPluv    maxPluv
## 0      34.26    -15.91  2014-11-16  ...  12.788037    4.689434  58.362456
## 1      34.26    -15.90  2014-11-16  ...  12.788037    4.689434  58.362456
## 2      34.26    -15.89  2014-11-16  ...  12.788037    4.689434  58.362456
## 3      34.26    -15.88  2014-11-16  ...  12.788037    4.689434  58.362456
## 4      34.26    -15.87  2014-11-16  ...  12.788037    4.689434  58.362456
## 
## [5 rows x 17 columns]
## Counter({0: 232917, 1: 19363, 4: 14178, 2: 8024, 3: 5440})

## Counter({0: 19363, 1: 19363, 2: 19363, 3: 19363, 4: 19363})
## Index(['Longitude', 'Latitude', 'weeks', 'Week', 'Altitude', 'Soil_type',
##        'Square_ID', 'Pluviometry', 'cum_Pluvio', 'Target', 'binTarget',
##        'Target_Range', 'Height', 'SoilHeight_Weight', 'meanPluv', 'medianPluv',
##        'maxPluv'],
##       dtype='object')
## [0]  validation_0-rmse:0.495411
## Will train until validation_0-rmse hasn't improved in 10 rounds.
## [1]  validation_0-rmse:0.490456
## [2]  validation_0-rmse:0.485552
## [3]  validation_0-rmse:0.480697
## [4]  validation_0-rmse:0.475898
## [5]  validation_0-rmse:0.471438
## [6]  validation_0-rmse:0.466731
## [7]  validation_0-rmse:0.462064
## [8]  validation_0-rmse:0.457445
## [9]  validation_0-rmse:0.452875
## [10] validation_0-rmse:0.448646
## [11] validation_0-rmse:0.444613
## [12] validation_0-rmse:0.440168
## [13] validation_0-rmse:0.435771
## [14] validation_0-rmse:0.431419
## [15] validation_0-rmse:0.427409
## [16] validation_0-rmse:0.423144
## [17] validation_0-rmse:0.418916
## [18] validation_0-rmse:0.414731
## [19] validation_0-rmse:0.410867
## [20] validation_0-rmse:0.407207
## [21] validation_0-rmse:0.403134
## [22] validation_0-rmse:0.399486
## [23] validation_0-rmse:0.395487
## [24] validation_0-rmse:0.391545
## [25] validation_0-rmse:0.387644
## [26] validation_0-rmse:0.383777
## [27] validation_0-rmse:0.379935
## [28] validation_0-rmse:0.376431
## [29] validation_0-rmse:0.372664
## [30] validation_0-rmse:0.368958
## [31] validation_0-rmse:0.36527
## [32] validation_0-rmse:0.361621
## [33] validation_0-rmse:0.358279
## [34] validation_0-rmse:0.354709
## [35] validation_0-rmse:0.351181
## [36] validation_0-rmse:0.347669
## [37] validation_0-rmse:0.344599
## [38] validation_0-rmse:0.341162
## [39] validation_0-rmse:0.338015
## [40] validation_0-rmse:0.334644
## [41] validation_0-rmse:0.331641
## [42] validation_0-rmse:0.328325
## [43] validation_0-rmse:0.325307
## [44] validation_0-rmse:0.322071
## [45] validation_0-rmse:0.319188
## [46] validation_0-rmse:0.316008
## [47] validation_0-rmse:0.313231
## [48] validation_0-rmse:0.310111
## [49] validation_0-rmse:0.307018
## [50] validation_0-rmse:0.303959
## [51] validation_0-rmse:0.300929
## [52] validation_0-rmse:0.298188
## [53] validation_0-rmse:0.295218
## [54] validation_0-rmse:0.292277
## [55] validation_0-rmse:0.289362
## [56] validation_0-rmse:0.28648
## [57] validation_0-rmse:0.28387
## [58] validation_0-rmse:0.281039
## [59] validation_0-rmse:0.278241
## [60] validation_0-rmse:0.275478
## [61] validation_0-rmse:0.272731
## [62] validation_0-rmse:0.270015
## [63] validation_0-rmse:0.267325
## [64] validation_0-rmse:0.264663
## [65] validation_0-rmse:0.26203
## [66] validation_0-rmse:0.259647
## [67] validation_0-rmse:0.257297
## [68] validation_0-rmse:0.254734
## [69] validation_0-rmse:0.252203
## [70] validation_0-rmse:0.249691
## [71] validation_0-rmse:0.24748
## [72] validation_0-rmse:0.245012
## [73] validation_0-rmse:0.242575
## [74] validation_0-rmse:0.240159
## [75] validation_0-rmse:0.23777
## [76] validation_0-rmse:0.235399
## [77] validation_0-rmse:0.233056
## [78] validation_0-rmse:0.230737
## [79] validation_0-rmse:0.228712
## [80] validation_0-rmse:0.226696
## [81] validation_0-rmse:0.224442
## [82] validation_0-rmse:0.222511
## [83] validation_0-rmse:0.220295
## [84] validation_0-rmse:0.218406
## [85] validation_0-rmse:0.216453
## [86] validation_0-rmse:0.214603
## [87] validation_0-rmse:0.212471
## [88] validation_0-rmse:0.210353
## [89] validation_0-rmse:0.208262
## [90] validation_0-rmse:0.206188
## [91] validation_0-rmse:0.20414
## [92] validation_0-rmse:0.202103
## [93] validation_0-rmse:0.200094
## [94] validation_0-rmse:0.198103
## [95] validation_0-rmse:0.19634
## [96] validation_0-rmse:0.194642
## [97] validation_0-rmse:0.192709
## [98] validation_0-rmse:0.190789
## [99] validation_0-rmse:0.189109
## [100]    validation_0-rmse:0.187226
## [101]    validation_0-rmse:0.185365
## [102]    validation_0-rmse:0.183518
## [103]    validation_0-rmse:0.181696
## [104]    validation_0-rmse:0.179884
## [105]    validation_0-rmse:0.178099
## [106]    validation_0-rmse:0.176528
## [107]    validation_0-rmse:0.174773
## [108]    validation_0-rmse:0.173033
## [109]    validation_0-rmse:0.171314
## [110]    validation_0-rmse:0.169611
## [111]    validation_0-rmse:0.167922
## [112]    validation_0-rmse:0.166251
## [113]    validation_0-rmse:0.164599
## [114]    validation_0-rmse:0.162962
## [115]    validation_0-rmse:0.161339
## [116]    validation_0-rmse:0.159735
## [117]    validation_0-rmse:0.158369
## [118]    validation_0-rmse:0.156982
## [119]    validation_0-rmse:0.155419
## [120]    validation_0-rmse:0.153876
## [121]    validation_0-rmse:0.152346
## [122]    validation_0-rmse:0.150833
## [123]    validation_0-rmse:0.14933
## [124]    validation_0-rmse:0.147845
## [125]    validation_0-rmse:0.146378
## [126]    validation_0-rmse:0.144921
## [127]    validation_0-rmse:0.143478
## [128]    validation_0-rmse:0.142261
## [129]    validation_0-rmse:0.140846
## [130]    validation_0-rmse:0.139446
## [131]    validation_0-rmse:0.13806
## [132]    validation_0-rmse:0.136687
## [133]    validation_0-rmse:0.135504
## [134]    validation_0-rmse:0.134156
## [135]    validation_0-rmse:0.132821
## [136]    validation_0-rmse:0.131705
## [137]    validation_0-rmse:0.130395
## [138]    validation_0-rmse:0.129271
## [139]    validation_0-rmse:0.128158
## [140]    validation_0-rmse:0.127062
## [141]    validation_0-rmse:0.125798
## [142]    validation_0-rmse:0.124549
## [143]    validation_0-rmse:0.123484
## [144]    validation_0-rmse:0.122256
## [145]    validation_0-rmse:0.121215
## [146]    validation_0-rmse:0.120011
## [147]    validation_0-rmse:0.11882
## [148]    validation_0-rmse:0.117636
## [149]    validation_0-rmse:0.116468
## [150]    validation_0-rmse:0.115309
## [151]    validation_0-rmse:0.114167
## [152]    validation_0-rmse:0.113033
## [153]    validation_0-rmse:0.111911
## [154]    validation_0-rmse:0.11096
## [155]    validation_0-rmse:0.10986
## [156]    validation_0-rmse:0.108766
## [157]    validation_0-rmse:0.107686
## [158]    validation_0-rmse:0.106779
## [159]    validation_0-rmse:0.105915
## [160]    validation_0-rmse:0.104862
## [161]    validation_0-rmse:0.103823
## [162]    validation_0-rmse:0.102791
## [163]    validation_0-rmse:0.101771
## [164]    validation_0-rmse:0.10076
## [165]    validation_0-rmse:0.099917
## [166]    validation_0-rmse:0.099109
## [167]    validation_0-rmse:0.098284
## [168]    validation_0-rmse:0.097308
## [169]    validation_0-rmse:0.096342
## [170]    validation_0-rmse:0.095387
## [171]    validation_0-rmse:0.094439
## [172]    validation_0-rmse:0.0935
## [173]    validation_0-rmse:0.092574
## [174]    validation_0-rmse:0.091657
## [175]    validation_0-rmse:0.090747
## [176]    validation_0-rmse:0.089847
## [177]    validation_0-rmse:0.088954
## [178]    validation_0-rmse:0.088071
## [179]    validation_0-rmse:0.087198
## [180]    validation_0-rmse:0.086332
## [181]    validation_0-rmse:0.085477
## [182]    validation_0-rmse:0.084628
## [183]    validation_0-rmse:0.083789
## [184]    validation_0-rmse:0.082956
## [185]    validation_0-rmse:0.082298
## [186]    validation_0-rmse:0.081482
## [187]    validation_0-rmse:0.080673
## [188]    validation_0-rmse:0.079871
## [189]    validation_0-rmse:0.079081
## [190]    validation_0-rmse:0.078297
## [191]    validation_0-rmse:0.07768
## [192]    validation_0-rmse:0.076908
## [193]    validation_0-rmse:0.076146
## [194]    validation_0-rmse:0.07539
## [195]    validation_0-rmse:0.074641
## [196]    validation_0-rmse:0.074031
## [197]    validation_0-rmse:0.07343
## [198]    validation_0-rmse:0.072702
## [199]    validation_0-rmse:0.071981
## [200]    validation_0-rmse:0.071399
## [201]    validation_0-rmse:0.070844
## [202]    validation_0-rmse:0.070142
## [203]    validation_0-rmse:0.069446
## [204]    validation_0-rmse:0.068758
## [205]    validation_0-rmse:0.068076
## [206]    validation_0-rmse:0.067401
## [207]    validation_0-rmse:0.066732
## [208]    validation_0-rmse:0.066069
## [209]    validation_0-rmse:0.065415
## [210]    validation_0-rmse:0.064765
## [211]    validation_0-rmse:0.064122
## [212]    validation_0-rmse:0.063627
## [213]    validation_0-rmse:0.062995
## [214]    validation_0-rmse:0.062371
## [215]    validation_0-rmse:0.061753
## [216]    validation_0-rmse:0.061139
## [217]    validation_0-rmse:0.060534
## [218]    validation_0-rmse:0.059934
## [219]    validation_0-rmse:0.059474
## [220]    validation_0-rmse:0.058885
## [221]    validation_0-rmse:0.058301
## [222]    validation_0-rmse:0.057722
## [223]    validation_0-rmse:0.057283
## [224]    validation_0-rmse:0.056833
## [225]    validation_0-rmse:0.056269
## [226]    validation_0-rmse:0.05571
## [227]    validation_0-rmse:0.055159
## [228]    validation_0-rmse:0.054612
## [229]    validation_0-rmse:0.05407
## [230]    validation_0-rmse:0.053534
## [231]    validation_0-rmse:0.053003
## [232]    validation_0-rmse:0.052477
## [233]    validation_0-rmse:0.051956
## [234]    validation_0-rmse:0.051442
## [235]    validation_0-rmse:0.050931
## [236]    validation_0-rmse:0.050426
## [237]    validation_0-rmse:0.050051
## [238]    validation_0-rmse:0.049554
## [239]    validation_0-rmse:0.049063
## [240]    validation_0-rmse:0.048681
## [241]    validation_0-rmse:0.048324
## [242]    validation_0-rmse:0.047844
## [243]    validation_0-rmse:0.04737
## [244]    validation_0-rmse:0.0469
## [245]    validation_0-rmse:0.046435
## [246]    validation_0-rmse:0.045975
## [247]    validation_0-rmse:0.045519
## [248]    validation_0-rmse:0.045067
## [249]    validation_0-rmse:0.044721
## [250]    validation_0-rmse:0.044278
## [251]    validation_0-rmse:0.043838
## [252]    validation_0-rmse:0.043405
## [253]    validation_0-rmse:0.042974
## [254]    validation_0-rmse:0.042548
## [255]    validation_0-rmse:0.042126
## [256]    validation_0-rmse:0.041709
## [257]    validation_0-rmse:0.041295
## [258]    validation_0-rmse:0.040885
## [259]    validation_0-rmse:0.04048
## [260]    validation_0-rmse:0.040078
## [261]    validation_0-rmse:0.03968
## [262]    validation_0-rmse:0.039287
## [263]    validation_0-rmse:0.038988
## [264]    validation_0-rmse:0.038601
## [265]    validation_0-rmse:0.038219
## [266]    validation_0-rmse:0.03784
## [267]    validation_0-rmse:0.037465
## [268]    validation_0-rmse:0.037093
## [269]    validation_0-rmse:0.036813
## [270]    validation_0-rmse:0.03655
## [271]    validation_0-rmse:0.036189
## [272]    validation_0-rmse:0.03583
## [273]    validation_0-rmse:0.035561
## [274]    validation_0-rmse:0.035306
## [275]    validation_0-rmse:0.034957
## [276]    validation_0-rmse:0.03461
## [277]    validation_0-rmse:0.034267
## [278]    validation_0-rmse:0.033927
## [279]    validation_0-rmse:0.033677
## [280]    validation_0-rmse:0.033445
## [281]    validation_0-rmse:0.033113
## [282]    validation_0-rmse:0.032785
## [283]    validation_0-rmse:0.03246
## [284]    validation_0-rmse:0.032138
## [285]    validation_0-rmse:0.031819
## [286]    validation_0-rmse:0.031504
## [287]    validation_0-rmse:0.031191
## [288]    validation_0-rmse:0.030883
## [289]    validation_0-rmse:0.030577
## [290]    validation_0-rmse:0.030274
## [291]    validation_0-rmse:0.03006
## [292]    validation_0-rmse:0.029843
## [293]    validation_0-rmse:0.029629
## [294]    validation_0-rmse:0.029424
## [295]    validation_0-rmse:0.029133
## [296]    validation_0-rmse:0.028844
## [297]    validation_0-rmse:0.028558
## [298]    validation_0-rmse:0.028355
## [299]    validation_0-rmse:0.028156
## [300]    validation_0-rmse:0.027877
## [301]    validation_0-rmse:0.027682
## [302]    validation_0-rmse:0.027408
## [303]    validation_0-rmse:0.027136
## [304]    validation_0-rmse:0.026867
## [305]    validation_0-rmse:0.026601
## [306]    validation_0-rmse:0.026417
## [307]    validation_0-rmse:0.026155
## [308]    validation_0-rmse:0.025981
## [309]    validation_0-rmse:0.025804
## [310]    validation_0-rmse:0.025548
## [311]    validation_0-rmse:0.025295
## [312]    validation_0-rmse:0.025044
## [313]    validation_0-rmse:0.024875
## [314]    validation_0-rmse:0.024719
## [315]    validation_0-rmse:0.024475
## [316]    validation_0-rmse:0.024323
## [317]    validation_0-rmse:0.024083
## [318]    validation_0-rmse:0.023844
## [319]    validation_0-rmse:0.023686
## [320]    validation_0-rmse:0.023452
## [321]    validation_0-rmse:0.023303
## [322]    validation_0-rmse:0.023072
## [323]    validation_0-rmse:0.022843
## [324]    validation_0-rmse:0.022618
## [325]    validation_0-rmse:0.022394
## [326]    validation_0-rmse:0.022252
## [327]    validation_0-rmse:0.022032
## [328]    validation_0-rmse:0.021814
## [329]    validation_0-rmse:0.021684
## [330]    validation_0-rmse:0.021469
## [331]    validation_0-rmse:0.021331
## [332]    validation_0-rmse:0.02112
## [333]    validation_0-rmse:0.020911
## [334]    validation_0-rmse:0.02079
## [335]    validation_0-rmse:0.020584
## [336]    validation_0-rmse:0.020454
## [337]    validation_0-rmse:0.020331
## [338]    validation_0-rmse:0.020129
## [339]    validation_0-rmse:0.020009
## [340]    validation_0-rmse:0.01989
## [341]    validation_0-rmse:0.019693
## [342]    validation_0-rmse:0.019573
## [343]    validation_0-rmse:0.01938
## [344]    validation_0-rmse:0.019188
## [345]    validation_0-rmse:0.018998
## [346]    validation_0-rmse:0.01881
## [347]    validation_0-rmse:0.018624
## [348]    validation_0-rmse:0.01844
## [349]    validation_0-rmse:0.018257
## [350]    validation_0-rmse:0.018077
## [351]    validation_0-rmse:0.017898
## [352]    validation_0-rmse:0.017721
## [353]    validation_0-rmse:0.017546
## [354]    validation_0-rmse:0.01744
## [355]    validation_0-rmse:0.017268
## [356]    validation_0-rmse:0.017097
## [357]    validation_0-rmse:0.016995
## [358]    validation_0-rmse:0.016895
## [359]    validation_0-rmse:0.016729
## [360]    validation_0-rmse:0.016631
## [361]    validation_0-rmse:0.016467
## [362]    validation_0-rmse:0.016304
## [363]    validation_0-rmse:0.016212
## [364]    validation_0-rmse:0.016052
## [365]    validation_0-rmse:0.015893
## [366]    validation_0-rmse:0.015736
## [367]    validation_0-rmse:0.015649
## [368]    validation_0-rmse:0.015494
## [369]    validation_0-rmse:0.015341
## [370]    validation_0-rmse:0.015257
## [371]    validation_0-rmse:0.015181
## [372]    validation_0-rmse:0.015031
## [373]    validation_0-rmse:0.014882
## [374]    validation_0-rmse:0.014735
## [375]    validation_0-rmse:0.01459
## [376]    validation_0-rmse:0.014445
## [377]    validation_0-rmse:0.014302
## [378]    validation_0-rmse:0.014233
## [379]    validation_0-rmse:0.014092
## [380]    validation_0-rmse:0.013953
## [381]    validation_0-rmse:0.013877
## [382]    validation_0-rmse:0.01374
## [383]    validation_0-rmse:0.013604
## [384]    validation_0-rmse:0.013469
## [385]    validation_0-rmse:0.013336
## [386]    validation_0-rmse:0.013264
## [387]    validation_0-rmse:0.013133
## [388]    validation_0-rmse:0.013003
## [389]    validation_0-rmse:0.012874
## [390]    validation_0-rmse:0.012807
## [391]    validation_0-rmse:0.01274
## [392]    validation_0-rmse:0.012673
## [393]    validation_0-rmse:0.012548
## [394]    validation_0-rmse:0.012424
## [395]    validation_0-rmse:0.012359
## [396]    validation_0-rmse:0.012237
## [397]    validation_0-rmse:0.012175
## [398]    validation_0-rmse:0.012055
## [399]    validation_0-rmse:0.011936
## [400]    validation_0-rmse:0.011818
## [401]    validation_0-rmse:0.011701
## [402]    validation_0-rmse:0.011585
## [403]    validation_0-rmse:0.011471
## [404]    validation_0-rmse:0.011357
## [405]    validation_0-rmse:0.011301
## [406]    validation_0-rmse:0.011246
## [407]    validation_0-rmse:0.011135
## [408]    validation_0-rmse:0.01108
## [409]    validation_0-rmse:0.010971
## [410]    validation_0-rmse:0.010862
## [411]    validation_0-rmse:0.010755
## [412]    validation_0-rmse:0.010703
## [413]    validation_0-rmse:0.010597
## [414]    validation_0-rmse:0.010493
## [415]    validation_0-rmse:0.010389
## [416]    validation_0-rmse:0.010286
## [417]    validation_0-rmse:0.010185
## [418]    validation_0-rmse:0.010084
## [419]    validation_0-rmse:0.009984
## [420]    validation_0-rmse:0.009886
## [421]    validation_0-rmse:0.00984
## [422]    validation_0-rmse:0.009742
## [423]    validation_0-rmse:0.009697
## [424]    validation_0-rmse:0.009601
## [425]    validation_0-rmse:0.009506
## [426]    validation_0-rmse:0.009412
## [427]    validation_0-rmse:0.009319
## [428]    validation_0-rmse:0.009276
## [429]    validation_0-rmse:0.009185
## [430]    validation_0-rmse:0.009094
## [431]    validation_0-rmse:0.009004
## [432]    validation_0-rmse:0.008915
## [433]    validation_0-rmse:0.008827
## [434]    validation_0-rmse:0.008787
## [435]    validation_0-rmse:0.0087
## [436]    validation_0-rmse:0.008614
## [437]    validation_0-rmse:0.008529
## [438]    validation_0-rmse:0.008444
## [439]    validation_0-rmse:0.008361
## [440]    validation_0-rmse:0.008278
## [441]    validation_0-rmse:0.008197
## [442]    validation_0-rmse:0.008116
## [443]    validation_0-rmse:0.008036
## [444]    validation_0-rmse:0.007956
## [445]    validation_0-rmse:0.007877
## [446]    validation_0-rmse:0.007843
## [447]    validation_0-rmse:0.007765
## [448]    validation_0-rmse:0.007731
## [449]    validation_0-rmse:0.007655
## [450]    validation_0-rmse:0.007579
## [451]    validation_0-rmse:0.007504
## [452]    validation_0-rmse:0.00743
## [453]    validation_0-rmse:0.007357
## [454]    validation_0-rmse:0.007284
## [455]    validation_0-rmse:0.007253
## [456]    validation_0-rmse:0.007222
## [457]    validation_0-rmse:0.00715
## [458]    validation_0-rmse:0.00712
## [459]    validation_0-rmse:0.007096
## [460]    validation_0-rmse:0.007026
## [461]    validation_0-rmse:0.006957
## [462]    validation_0-rmse:0.006888
## [463]    validation_0-rmse:0.00682
## [464]    validation_0-rmse:0.006792
## [465]    validation_0-rmse:0.006725
## [466]    validation_0-rmse:0.006659
## [467]    validation_0-rmse:0.006593
## [468]    validation_0-rmse:0.006567
## [469]    validation_0-rmse:0.006502
## [470]    validation_0-rmse:0.006438
## [471]    validation_0-rmse:0.006374
## [472]    validation_0-rmse:0.006311
## [473]    validation_0-rmse:0.006249
## [474]    validation_0-rmse:0.006187
## [475]    validation_0-rmse:0.006162
## [476]    validation_0-rmse:0.006102
## [477]    validation_0-rmse:0.006078
## [478]    validation_0-rmse:0.00606
## [479]    validation_0-rmse:0.006042
## [480]    validation_0-rmse:0.005983
## [481]    validation_0-rmse:0.005961
## [482]    validation_0-rmse:0.005902
## [483]    validation_0-rmse:0.005843
## [484]    validation_0-rmse:0.005786
## [485]    validation_0-rmse:0.005729
## [486]    validation_0-rmse:0.005672
## [487]    validation_0-rmse:0.005616
## [488]    validation_0-rmse:0.005561
## [489]    validation_0-rmse:0.00554
## [490]    validation_0-rmse:0.005486
## [491]    validation_0-rmse:0.005431
## [492]    validation_0-rmse:0.005417
## [493]    validation_0-rmse:0.005363
## [494]    validation_0-rmse:0.00531
## [495]    validation_0-rmse:0.005258
## [496]    validation_0-rmse:0.005239
## [497]    validation_0-rmse:0.005187
## [498]    validation_0-rmse:0.005136
## [499]    validation_0-rmse:0.005085
## [500]    validation_0-rmse:0.005068
## [501]    validation_0-rmse:0.005018
## [502]    validation_0-rmse:0.005001
## [503]    validation_0-rmse:0.004952
## [504]    validation_0-rmse:0.004903
## [505]    validation_0-rmse:0.004886
## [506]    validation_0-rmse:0.004838
## [507]    validation_0-rmse:0.00479
## [508]    validation_0-rmse:0.004743
## [509]    validation_0-rmse:0.004696
## [510]    validation_0-rmse:0.004681
## [511]    validation_0-rmse:0.004635
## [512]    validation_0-rmse:0.004589
## [513]    validation_0-rmse:0.004574
## [514]    validation_0-rmse:0.004529
## [515]    validation_0-rmse:0.004515
## [516]    validation_0-rmse:0.00447
## [517]    validation_0-rmse:0.004426
## [518]    validation_0-rmse:0.004383
## [519]    validation_0-rmse:0.00434
## [520]    validation_0-rmse:0.004297
## [521]    validation_0-rmse:0.004254
## [522]    validation_0-rmse:0.004241
## [523]    validation_0-rmse:0.0042
## [524]    validation_0-rmse:0.004158
## [525]    validation_0-rmse:0.004117
## [526]    validation_0-rmse:0.004076
## [527]    validation_0-rmse:0.004064
## [528]    validation_0-rmse:0.004024
## [529]    validation_0-rmse:0.003985
## [530]    validation_0-rmse:0.003976
## [531]    validation_0-rmse:0.003937
## [532]    validation_0-rmse:0.003898
## [533]    validation_0-rmse:0.00386
## [534]    validation_0-rmse:0.003822
## [535]    validation_0-rmse:0.003784
## [536]    validation_0-rmse:0.003747
## [537]    validation_0-rmse:0.003736
## [538]    validation_0-rmse:0.003699
## [539]    validation_0-rmse:0.003663
## [540]    validation_0-rmse:0.003627
## [541]    validation_0-rmse:0.003591
## [542]    validation_0-rmse:0.003556
## [543]    validation_0-rmse:0.003521
## [544]    validation_0-rmse:0.003486
## [545]    validation_0-rmse:0.003476
## [546]    validation_0-rmse:0.003442
## [547]    validation_0-rmse:0.003432
## [548]    validation_0-rmse:0.003423
## [549]    validation_0-rmse:0.003414
## [550]    validation_0-rmse:0.00338
## [551]    validation_0-rmse:0.003347
## [552]    validation_0-rmse:0.003338
## [553]    validation_0-rmse:0.003305
## [554]    validation_0-rmse:0.003296
## [555]    validation_0-rmse:0.003288
## [556]    validation_0-rmse:0.003255
## [557]    validation_0-rmse:0.003223
## [558]    validation_0-rmse:0.003192
## [559]    validation_0-rmse:0.003184
## [560]    validation_0-rmse:0.003176
## [561]    validation_0-rmse:0.003145
## [562]    validation_0-rmse:0.003113
## [563]    validation_0-rmse:0.003083
## [564]    validation_0-rmse:0.003052
## [565]    validation_0-rmse:0.003045
## [566]    validation_0-rmse:0.003015
## [567]    validation_0-rmse:0.002986
## [568]    validation_0-rmse:0.002979
## [569]    validation_0-rmse:0.002949
## [570]    validation_0-rmse:0.002943
## [571]    validation_0-rmse:0.002936
## [572]    validation_0-rmse:0.002907
## [573]    validation_0-rmse:0.002879
## [574]    validation_0-rmse:0.00285
## [575]    validation_0-rmse:0.002844
## [576]    validation_0-rmse:0.002838
## [577]    validation_0-rmse:0.00281
## [578]    validation_0-rmse:0.002782
## [579]    validation_0-rmse:0.002755
## [580]    validation_0-rmse:0.002728
## [581]    validation_0-rmse:0.002701
## [582]    validation_0-rmse:0.002675
## [583]    validation_0-rmse:0.002672
## [584]    validation_0-rmse:0.002646
## [585]    validation_0-rmse:0.00262
## [586]    validation_0-rmse:0.002594
## [587]    validation_0-rmse:0.002569
## [588]    validation_0-rmse:0.002543
## [589]    validation_0-rmse:0.002538
## [590]    validation_0-rmse:0.002513
## [591]    validation_0-rmse:0.002488
## [592]    validation_0-rmse:0.002483
## [593]    validation_0-rmse:0.002459
## [594]    validation_0-rmse:0.002435
## [595]    validation_0-rmse:0.002411
## [596]    validation_0-rmse:0.002387
## [597]    validation_0-rmse:0.002364
## [598]    validation_0-rmse:0.002362
## [599]    validation_0-rmse:0.002339
## [600]    validation_0-rmse:0.002316
## [601]    validation_0-rmse:0.002293
## [602]    validation_0-rmse:0.00227
## [603]    validation_0-rmse:0.002266
## [604]    validation_0-rmse:0.002244
## [605]    validation_0-rmse:0.002222
## [606]    validation_0-rmse:0.0022
## [607]    validation_0-rmse:0.002178
## [608]    validation_0-rmse:0.002174
## [609]    validation_0-rmse:0.002153
## [610]    validation_0-rmse:0.002132
## [611]    validation_0-rmse:0.002128
## [612]    validation_0-rmse:0.002107
## [613]    validation_0-rmse:0.002086
## [614]    validation_0-rmse:0.002083
## [615]    validation_0-rmse:0.002062
## [616]    validation_0-rmse:0.002042
## [617]    validation_0-rmse:0.002022
## [618]    validation_0-rmse:0.002018
## [619]    validation_0-rmse:0.001999
## [620]    validation_0-rmse:0.001995
## [621]    validation_0-rmse:0.001976
## [622]    validation_0-rmse:0.001956
## [623]    validation_0-rmse:0.001953
## [624]    validation_0-rmse:0.001934
## [625]    validation_0-rmse:0.001915
## [626]    validation_0-rmse:0.001896
## [627]    validation_0-rmse:0.001877
## [628]    validation_0-rmse:0.001859
## [629]    validation_0-rmse:0.001841
## [630]    validation_0-rmse:0.001823
## [631]    validation_0-rmse:0.001805
## [632]    validation_0-rmse:0.001787
## [633]    validation_0-rmse:0.00177
## [634]    validation_0-rmse:0.001752
## [635]    validation_0-rmse:0.001735
## [636]    validation_0-rmse:0.001718
## [637]    validation_0-rmse:0.001701
## [638]    validation_0-rmse:0.001685
## [639]    validation_0-rmse:0.001684
## [640]    validation_0-rmse:0.001668
## [641]    validation_0-rmse:0.001651
## [642]    validation_0-rmse:0.001635
## [643]    validation_0-rmse:0.001619
## [644]    validation_0-rmse:0.001603
## [645]    validation_0-rmse:0.001601
## [646]    validation_0-rmse:0.001598
## [647]    validation_0-rmse:0.001583
## [648]    validation_0-rmse:0.001567
## [649]    validation_0-rmse:0.001552
## [650]    validation_0-rmse:0.001537
## [651]    validation_0-rmse:0.001522
## [652]    validation_0-rmse:0.001507
## [653]    validation_0-rmse:0.001492
## [654]    validation_0-rmse:0.001478
## [655]    validation_0-rmse:0.001463
## [656]    validation_0-rmse:0.001449
## [657]    validation_0-rmse:0.001435
## [658]    validation_0-rmse:0.001421
## [659]    validation_0-rmse:0.001418
## [660]    validation_0-rmse:0.001405
## [661]    validation_0-rmse:0.001391
## [662]    validation_0-rmse:0.001377
## [663]    validation_0-rmse:0.001364
## [664]    validation_0-rmse:0.001351
## [665]    validation_0-rmse:0.001337
## [666]    validation_0-rmse:0.001324
## [667]    validation_0-rmse:0.001312
## [668]    validation_0-rmse:0.001299
## [669]    validation_0-rmse:0.001286
## [670]    validation_0-rmse:0.001274
## [671]    validation_0-rmse:0.001261
## [672]    validation_0-rmse:0.001249
## [673]    validation_0-rmse:0.001237
## [674]    validation_0-rmse:0.001225
## [675]    validation_0-rmse:0.001213
## [676]    validation_0-rmse:0.001211
## [677]    validation_0-rmse:0.001209
## [678]    validation_0-rmse:0.001207
## [679]    validation_0-rmse:0.001206
## [680]    validation_0-rmse:0.001194
## [681]    validation_0-rmse:0.001192
## [682]    validation_0-rmse:0.001191
## [683]    validation_0-rmse:0.001179
## [684]    validation_0-rmse:0.001177
## [685]    validation_0-rmse:0.001178
## [686]    validation_0-rmse:0.001166
## [687]    validation_0-rmse:0.001155
## [688]    validation_0-rmse:0.001153
## [689]    validation_0-rmse:0.001152
## [690]    validation_0-rmse:0.001151
## [691]    validation_0-rmse:0.001139
## [692]    validation_0-rmse:0.001128
## [693]    validation_0-rmse:0.001117
## [694]    validation_0-rmse:0.001106
## [695]    validation_0-rmse:0.001096
## [696]    validation_0-rmse:0.001085
## [697]    validation_0-rmse:0.001075
## [698]    validation_0-rmse:0.001064
## [699]    validation_0-rmse:0.001063
## [700]    validation_0-rmse:0.001053
## [701]    validation_0-rmse:0.001042
## [702]    validation_0-rmse:0.001032
## [703]    validation_0-rmse:0.001031
## [704]    validation_0-rmse:0.001032
## [705]    validation_0-rmse:0.001022
## [706]    validation_0-rmse:0.001012
## [707]    validation_0-rmse:0.001011
## [708]    validation_0-rmse:0.001001
## [709]    validation_0-rmse:0.001
## [710]    validation_0-rmse:0.00099
## [711]    validation_0-rmse:0.00098
## [712]    validation_0-rmse:0.000971
## [713]    validation_0-rmse:0.00097
## [714]    validation_0-rmse:0.000969
## [715]    validation_0-rmse:0.000968
## [716]    validation_0-rmse:0.000959
## [717]    validation_0-rmse:0.000949
## [718]    validation_0-rmse:0.000948
## [719]    validation_0-rmse:0.000949
## [720]    validation_0-rmse:0.00094
## [721]    validation_0-rmse:0.000931
## [722]    validation_0-rmse:0.000922
## [723]    validation_0-rmse:0.000913
## [724]    validation_0-rmse:0.000912
## [725]    validation_0-rmse:0.000903
## [726]    validation_0-rmse:0.000895
## [727]    validation_0-rmse:0.000886
## [728]    validation_0-rmse:0.000877
## [729]    validation_0-rmse:0.000869
## [730]    validation_0-rmse:0.00086
## [731]    validation_0-rmse:0.00086
## [732]    validation_0-rmse:0.000851
## [733]    validation_0-rmse:0.000843
## [734]    validation_0-rmse:0.000835
## [735]    validation_0-rmse:0.000827
## [736]    validation_0-rmse:0.000828
## [737]    validation_0-rmse:0.00082
## [738]    validation_0-rmse:0.000819
## [739]    validation_0-rmse:0.000811
## [740]    validation_0-rmse:0.000803
## [741]    validation_0-rmse:0.000796
## [742]    validation_0-rmse:0.000788
## [743]    validation_0-rmse:0.00078
## [744]    validation_0-rmse:0.000773
## [745]    validation_0-rmse:0.000774
## [746]    validation_0-rmse:0.000773
## [747]    validation_0-rmse:0.000766
## [748]    validation_0-rmse:0.000758
## [749]    validation_0-rmse:0.000751
## [750]    validation_0-rmse:0.000744
## [751]    validation_0-rmse:0.000737
## [752]    validation_0-rmse:0.00073
## [753]    validation_0-rmse:0.000723
## [754]    validation_0-rmse:0.000723
## [755]    validation_0-rmse:0.000717
## [756]    validation_0-rmse:0.000716
## [757]    validation_0-rmse:0.000709
## [758]    validation_0-rmse:0.000702
## [759]    validation_0-rmse:0.000696
## [760]    validation_0-rmse:0.000689
## [761]    validation_0-rmse:0.000682
## [762]    validation_0-rmse:0.000683
## [763]    validation_0-rmse:0.000683
## [764]    validation_0-rmse:0.000683
## [765]    validation_0-rmse:0.000677
## [766]    validation_0-rmse:0.00067
## [767]    validation_0-rmse:0.000664
## [768]    validation_0-rmse:0.000658
## [769]    validation_0-rmse:0.000659
## [770]    validation_0-rmse:0.000652
## [771]    validation_0-rmse:0.000646
## [772]    validation_0-rmse:0.00064
## [773]    validation_0-rmse:0.000634
## [774]    validation_0-rmse:0.000633
## [775]    validation_0-rmse:0.000627
## [776]    validation_0-rmse:0.000627
## [777]    validation_0-rmse:0.000621
## [778]    validation_0-rmse:0.00062
## [779]    validation_0-rmse:0.000614
## [780]    validation_0-rmse:0.000609
## [781]    validation_0-rmse:0.000603
## [782]    validation_0-rmse:0.000604
## [783]    validation_0-rmse:0.000603
## [784]    validation_0-rmse:0.000603
## [785]    validation_0-rmse:0.000597
## [786]    validation_0-rmse:0.000591
## [787]    validation_0-rmse:0.000591
## [788]    validation_0-rmse:0.000585
## [789]    validation_0-rmse:0.00058
## [790]    validation_0-rmse:0.000574
## [791]    validation_0-rmse:0.000574
## [792]    validation_0-rmse:0.000568
## [793]    validation_0-rmse:0.000563
## [794]    validation_0-rmse:0.000558
## [795]    validation_0-rmse:0.000552
## [796]    validation_0-rmse:0.000547
## [797]    validation_0-rmse:0.000542
## [798]    validation_0-rmse:0.000537
## [799]    validation_0-rmse:0.000532
## [800]    validation_0-rmse:0.000527
## [801]    validation_0-rmse:0.000526
## [802]    validation_0-rmse:0.000526
## [803]    validation_0-rmse:0.000521
## [804]    validation_0-rmse:0.000521
## [805]    validation_0-rmse:0.000516
## [806]    validation_0-rmse:0.000515
## [807]    validation_0-rmse:0.000511
## [808]    validation_0-rmse:0.000506
## [809]    validation_0-rmse:0.000501
## [810]    validation_0-rmse:0.000496
## [811]    validation_0-rmse:0.000492
## [812]    validation_0-rmse:0.000492
## [813]    validation_0-rmse:0.000488
## [814]    validation_0-rmse:0.000483
## [815]    validation_0-rmse:0.000483
## [816]    validation_0-rmse:0.000484
## [817]    validation_0-rmse:0.000479
## [818]    validation_0-rmse:0.000474
## [819]    validation_0-rmse:0.00047
## [820]    validation_0-rmse:0.000471
## [821]    validation_0-rmse:0.000471
## [822]    validation_0-rmse:0.000467
## [823]    validation_0-rmse:0.000463
## [824]    validation_0-rmse:0.000458
## [825]    validation_0-rmse:0.000454
## [826]    validation_0-rmse:0.00045
## [827]    validation_0-rmse:0.000446
## [828]    validation_0-rmse:0.000441
## [829]    validation_0-rmse:0.000441
## [830]    validation_0-rmse:0.000437
## [831]    validation_0-rmse:0.000433
## [832]    validation_0-rmse:0.000429
## [833]    validation_0-rmse:0.000425
## [834]    validation_0-rmse:0.000424
## [835]    validation_0-rmse:0.00042
## [836]    validation_0-rmse:0.000417
## [837]    validation_0-rmse:0.000413
## [838]    validation_0-rmse:0.000409
## [839]    validation_0-rmse:0.000408
## [840]    validation_0-rmse:0.000405
## [841]    validation_0-rmse:0.000404
## [842]    validation_0-rmse:0.000404
## [843]    validation_0-rmse:0.0004
## [844]    validation_0-rmse:0.0004
## [845]    validation_0-rmse:0.000396
## [846]    validation_0-rmse:0.000393
## [847]    validation_0-rmse:0.000389
## [848]    validation_0-rmse:0.00039
## [849]    validation_0-rmse:0.000386
## [850]    validation_0-rmse:0.000386
## [851]    validation_0-rmse:0.000382
## [852]    validation_0-rmse:0.000379
## [853]    validation_0-rmse:0.000379
## [854]    validation_0-rmse:0.000375
## [855]    validation_0-rmse:0.000375
## [856]    validation_0-rmse:0.000371
## [857]    validation_0-rmse:0.000368
## [858]    validation_0-rmse:0.000368
## [859]    validation_0-rmse:0.000364
## [860]    validation_0-rmse:0.000365
## [861]    validation_0-rmse:0.000365
## [862]    validation_0-rmse:0.000361
## [863]    validation_0-rmse:0.000358
## [864]    validation_0-rmse:0.000355
## [865]    validation_0-rmse:0.000351
## [866]    validation_0-rmse:0.000351
## [867]    validation_0-rmse:0.000348
## [868]    validation_0-rmse:0.000345
## [869]    validation_0-rmse:0.000345
## [870]    validation_0-rmse:0.000342
## [871]    validation_0-rmse:0.000339
## [872]    validation_0-rmse:0.000336
## [873]    validation_0-rmse:0.000334
## [874]    validation_0-rmse:0.000333
## [875]    validation_0-rmse:0.000331
## [876]    validation_0-rmse:0.00033
## [877]    validation_0-rmse:0.000329
## [878]    validation_0-rmse:0.000327
## [879]    validation_0-rmse:0.000326
## [880]    validation_0-rmse:0.000324
## [881]    validation_0-rmse:0.000323
## [882]    validation_0-rmse:0.000322
## [883]    validation_0-rmse:0.000321
## [884]    validation_0-rmse:0.000319
## [885]    validation_0-rmse:0.000318
## [886]    validation_0-rmse:0.000317
## [887]    validation_0-rmse:0.000316
## [888]    validation_0-rmse:0.000315
## [889]    validation_0-rmse:0.000313
## [890]    validation_0-rmse:0.000312
## [891]    validation_0-rmse:0.000311
## [892]    validation_0-rmse:0.00031
## [893]    validation_0-rmse:0.000309
## [894]    validation_0-rmse:0.000308
## [895]    validation_0-rmse:0.000307
## [896]    validation_0-rmse:0.000306
## [897]    validation_0-rmse:0.000305
## [898]    validation_0-rmse:0.000304
## [899]    validation_0-rmse:0.000303
## [900]    validation_0-rmse:0.000303
## [901]    validation_0-rmse:0.000302
## [902]    validation_0-rmse:0.000302
## [903]    validation_0-rmse:0.000301
## [904]    validation_0-rmse:0.0003
## [905]    validation_0-rmse:0.000299
## [906]    validation_0-rmse:0.000299
## [907]    validation_0-rmse:0.000298
## [908]    validation_0-rmse:0.000298
## [909]    validation_0-rmse:0.000298
## [910]    validation_0-rmse:0.000297
## [911]    validation_0-rmse:0.000297
## [912]    validation_0-rmse:0.000296
## [913]    validation_0-rmse:0.000295
## [914]    validation_0-rmse:0.000294
## [915]    validation_0-rmse:0.000295
## [916]    validation_0-rmse:0.000294
## [917]    validation_0-rmse:0.000293
## [918]    validation_0-rmse:0.000293
## [919]    validation_0-rmse:0.000293
## [920]    validation_0-rmse:0.000293
## [921]    validation_0-rmse:0.000293
## [922]    validation_0-rmse:0.000292
## [923]    validation_0-rmse:0.000292
## [924]    validation_0-rmse:0.000292
## [925]    validation_0-rmse:0.000292
## [926]    validation_0-rmse:0.000291
## [927]    validation_0-rmse:0.000291
## [928]    validation_0-rmse:0.00029
## [929]    validation_0-rmse:0.000289
## [930]    validation_0-rmse:0.000289
## [931]    validation_0-rmse:0.000288
## [932]    validation_0-rmse:0.000287
## [933]    validation_0-rmse:0.000287
## [934]    validation_0-rmse:0.000287
## [935]    validation_0-rmse:0.000286
## [936]    validation_0-rmse:0.000286
## [937]    validation_0-rmse:0.000285
## [938]    validation_0-rmse:0.000286
## [939]    validation_0-rmse:0.000285
## [940]    validation_0-rmse:0.000285
## [941]    validation_0-rmse:0.000286
## [942]    validation_0-rmse:0.000286
## [943]    validation_0-rmse:0.000285
## [944]    validation_0-rmse:0.000285
## [945]    validation_0-rmse:0.000285
## [946]    validation_0-rmse:0.000284
## [947]    validation_0-rmse:0.000284
## [948]    validation_0-rmse:0.000283
## [949]    validation_0-rmse:0.000282
## [950]    validation_0-rmse:0.000282
## [951]    validation_0-rmse:0.000282
## [952]    validation_0-rmse:0.000281
## [953]    validation_0-rmse:0.000281
## [954]    validation_0-rmse:0.00028
## [955]    validation_0-rmse:0.00028
## [956]    validation_0-rmse:0.000279
## [957]    validation_0-rmse:0.000279
## [958]    validation_0-rmse:0.000279
## [959]    validation_0-rmse:0.000278
## [960]    validation_0-rmse:0.000278
## [961]    validation_0-rmse:0.000277
## [962]    validation_0-rmse:0.000277
## [963]    validation_0-rmse:0.000277
## [964]    validation_0-rmse:0.000277
## [965]    validation_0-rmse:0.000277
## [966]    validation_0-rmse:0.000278
## [967]    validation_0-rmse:0.000277
## [968]    validation_0-rmse:0.000277
## [969]    validation_0-rmse:0.000277
## [970]    validation_0-rmse:0.000277
## [971]    validation_0-rmse:0.000277
## Stopping. Best iteration:
## [961]    validation_0-rmse:0.000277
## 
## XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
##              colsample_bynode=1, colsample_bytree=0.8, gamma=0,
##              importance_type='gain', learning_rate=0.01, max_delta_step=0,
##              max_depth=10, min_child_weight=9, missing=None, n_estimators=10000,
##              n_jobs=1, nthread=8, objective='reg:logistic', random_state=0,
##              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=4242,
##              silent=None, subsample=0.8, verbosity=1)
## 4.134720766666666 Minutes
## 0.46495489863356254
## 
## /Users/Mezhoud/anaconda3/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
##   _warn_prf(average, modifier, msg_start, len(result))
## <bound method NDFrame.head of        Square_ID      pred
## 0       4e3c3896  0.000041
## 1       4e3c3897  0.000041
## 2       4e3c3898  0.000041
## 3       4e3c3899  0.000041
## 4       4e3c389a  0.000041
## ...          ...       ...
## 279917  4e6f5dfd  0.000042
## 279918  4e6f5dfe  0.000042
## 279919  4e6f5dff  0.000042
## 279920  4e6f5e00  0.000042
## 279921  4e6f5e01  0.000047
## 
## [279922 rows x 2 columns]>